Cold crystallization effect on α and ρ **amorphous poly(ethylene terephthalate) relaxations by thermally stimulated discharge currents**

J. Belana and M. Pujal

Laboratorio de Fisica Aplicada, Escuela Tecnica Superior de Ingenieros Industriales de Terrassa (U.P.C.), Colon 11, Terrassa 08222, Barcelona, Spain

and P. Colomer and S. Montserrat

Laboratorio de Termodinamica y Fisicoquimica, Escuela Tecnica Superior de Ingenieros Industriales de Terrassa (U.P.C.), Colon 11, Terrassa 08222, Barcelona, Spain (Received I June 1987; revised 15 March 1988; accepted 22 March 1988)

The thermally stimulated discharge currents (TSDC) of crystalline poly(ethylene terephthalate) (PET-c) show two clearly differentiated relaxations, α_c and ρ_c , which could result from the α and ρ relaxations of amorphous PET as a consequence of the crystallization process. The evolution of α and ρ relaxations of amorphous PET has been studied by the application of a method which we have called thermal stimulation by steps (TSS) and by isothermal crystallization of amorphous samples for different times. The ρ relaxation increases due to progressive nucleation and subsequent growth of the nuclei until a maximum value is reached; from then on until extinction ρ is mainly affected by growth. The α relaxation decreases progressively until its total extinction following the increase of restrictions. For a certain degree of crystallinity, by applying the TSS method, simultaneous occurrence of α , ρ , α_c and ρ_c is achieved, which implies that α_c and ρ_c do not proceed from α and ρ and, consequently, that their origin is different.

(Keywords: poly(ethylene terephthalate); relaxations; cold crystallization; thermally stimulated discharge currents; thermal stimulation by steps)

INTRODUCTION

The technique of thermally stimulated discharge currents (TSDC) has proved most useful in studying the relaxations of polymeric materials, particularly in determining their origin (dipolar or space charge) and their association to concrete movements of the chains and/or changes in the material morphology. In this sense, the literature for poly(ethylene terephthalate) (PET) is vast $1-22$.

The TSDC curves resulting from amorphous PET electrets show, in the range room temperature- 100° C, two relaxations situated approximately at 80 and 90°C, called α and ρ , respectively. The first, associated with the glass transition, is dipolar while the other is of the space charge. Both relaxations have been studied previously¹⁹⁻²¹.

Some changes in both relaxations, which must be related to the degree of crystallinity of the sample, can be seen on comparing the TSDC curves of semicrystalline PET and amorphous PET. The crystallization of the material involves an increase of the mobility restrictions of the chains, which influences both the dipolar relaxation and the detrapping of the free charge.

The effect of crystallinity on the α relaxation has been thoroughly studied over the last two decades by dynamic mechanical analysis and dielectric analysis. Dynamic mechanical analysis^{23,24} shows displacement of the α

0032-3861/88/101738-07503.00 © 1988 Butterworth & Co. (Publishers) Ltd.

1738 POLYMER, 1988, Vol 29, October

relaxation to higher temperatures when the degree of crystallinity increases, while the height of the dispersion decreases and its width increases. However, for a given degree of crystallinity the relaxation tends to displace in the opposite direction^{25–28}. This behaviour is believed to result from the effect of crystal size on the amorphous region. At low crystallinities, the many small spherulites act like crosslinks and inhibit the movement of the segments in the amorphous domains while, at high crystallinities, the smaller number of large spherulites makes these domains more mobile. When the degree of crystallinity is the same, the effect of small but numerous spherulites inhibits these movements more than a few larger spherulites. Consequently, the method of preparing semicrystalline samples, with different morphology, may give rise to considerable changes in relaxation behaviour^{28,29}.

Dielectric measurements $30-32$ give similar behaviour to dynamic mechanical measurements with respect to relaxation displacement towards higher temperatures and the decrease of its height, on increasing the degree of crystallinity, although the relaxation tends to disappear. $McCrum²³$ and Boyd³³ have compared the dynamic mechanical and dielectric results and have re-examined the behaviour of the relaxation in semicrystalline material.

Papers concerning the effect of the degree of crystallinity on α and ρ relaxations of amorphous PET

studied by TSDC are few. With regard to α relaxation, Sacher^{10,11} discussed relaxation displacement to higher temperatures when a sample is annealed at 130°C. Vanderschueren³⁴ proved equally the displacement of T_{τ} and its fall in intensity on polarizing at 110°C, showing the greater extent of the relaxation and the decrease of the apparent activating energy on increasing the crystallinity while the T_a displacement is parallel to the T_s displacement of the material. Schneider²², using samples annealed at 80 and 90°C with annealing times of 1 and 100 h, observed a T_a displacement from 70 to 80°C for the samples annealed for 100 h at 90°C ($x_c = 10\frac{9}{2}$) as well as a fall in intensity and an increase in relaxation width.

With respect to ρ relaxation, Vanderschueren³⁴, Asano and Suzuki¹³ and Van Turnhout¹ demonstrated the increase of T_{ρ} with polarization temperature and the further decrease of I_{ρ} for higher polarization temperatures. They suggested that this effect may be caused by a likely injection of carriers which may neutralize the space charge, the ρ evolution being a result of a likely crystalline rearrangement. Schneider 22 pointed out a marked displacement of T_{ρ} in samples annealed for 100h at 90°C (T_p increased from 92 to 109°C), and believed it to be due to charge detrapping from increasingly deeper levels.

Apart from the question of whether amorphous PET shows 'paracrystalline' structures, undetectable by Xrays, which has given rise to some controversy³⁵⁻⁴⁰, the beginning of the cold crystallization has been shown to be between 80 and 100°C, according to the measurement system used⁴¹⁻⁴⁶. By differential scanning calorimetry (d.s.c.), the beginning of crystallization can be detected above 100°C, the exothermic peak being placed between 120 and 130° C⁴⁷⁻⁵⁰.

Isothermal crystallization for low annealing temperatures $(T_c < 100^{\circ}C)$ takes place by formation of new crystallites before the existing ones start growing, the size having no relation to temperature. Crystallization for high T_c results from diffusion, which makes the crystallites grow with little or no formation of new nuclei, the size of the crystal depending on temperature. For intermediate temperatures both effects occur simultaneously $41, 45, 51, 52$.

During non-isothermal crystallization and for a constant heating rate, the nuclei only form at low temperatures, their numbers being inversely proportional to the rate, while the crystals grow in size at higher temperatures with no increase in their number⁵³⁻⁵⁶

The aim of this Paper is to study the behaviour of α and ρ relaxations of amorphous PET by TSDC during cold crystallization of the material. The samples, with different crystallinity, will be formed either non-isothermally by breaking up depolarization at given temperatures or isothermally at temperatures at which nucleation or growth are dominant. In other words this is an approach to the evolution of relaxations *versus* the increase of crystallinity and its comparison with dielectric and dynamic mechanical measurements. It is also an attempt to see whether the α_c and ρ_c relaxations of crystalline PET result from a continuous displacement of α and ρ . The evolution of these relaxations will be correlated with the nucleation and/or growth occurring during crystallization.

EXPERIMENTAL

The experiments were carried out on commercial PET,

with a number average molecular weight M_n of 20 000. M_n was determined by viscosimetric measurements using o chlorophenol, at 25°C, as a solvent.

Amorphous PET films were prepared, with a diameter of 2 cm and thickness of \approx 250 μ m, by fusion and quenching in moulds. The films were conditioned for a few days in a vacuum chamber, at 40°C. The samples were heated to a temperature $\leq 90^{\circ}$ C to eliminate likely internal stresses originating during the manufacturing process which could give rise to polarization. Density measurements after this heating process gave, in all cases, a degree of crystallinity $\langle 1 \rangle$. The conditioned samples, without internal stresses, were metallized on both sides with aluminium in a vacuum chamber.

To form the electrets, the samples were heated from T_0 to the polarization temperature T_p and then a field E_p was applied to them for an isothermal time t_{pi} . Subsequently, the samples were cooled to a temperature $T_0 < T_p$ at a controlled rate v $(2^{\circ}C \text{ min}^{-1})$. The field was then withdrawn and the short-circuited electrets were kept for a time t_d before discharge was initiated.

The electret samples were discharged by heating at a rate v up to a final temperature T_f .

The experimental equipment used was formed by a measuring cell placed in an air-forced Heraeus oven modified to be controlled by a Setaram PID RT-3000 temperature programmer. The temperature was measured by means of Pt-100 probes located very near the sample with a digital thermometer Mettler TM-15 with an approximate accuracy of 0.1°C. The discharge current was measured with a digital electrometer Kheitley 616 whose accuracy is \pm 5% of reading in the range 10⁻⁹- 10^{-11} A. The current was recorded as a function of temperature in an H.P. 7046 A. Previous experiments show that the temperature gradients across the sample are lower than 0.2°C in the temperature range used in this work.

The trials developed to establish the effect of cold crystallization on the relaxations were done according to a method which we have called thermal stimulation by steps (TSS). *Figure 1* shows a TSS operating diagram.

The purpose of this method is to make electrets cyclically at a fixed T_p and then to apply to them a discharge up to a temperature T_f whose value increases by ΔT in each cycle. This increase should be as small as possible, < I°C in the temperature ranges where the most significant changes are expected. This process leads to gradual crystallization in the amorphous sample and the crystallinity is determined by density measurements using

Figure 1 Operating diagram for the thermal stimulation by steps (TSS) method

a density gradient column. Characterization of the sample, before the TSDC trials, was performed by d.s.c. using a Mettler TA-3000 calorimeter.

RESULTS AND DISCUSSION

Figure 2 shows the discharge of PET amorphous and semicrystalline electrets, formed under the conditions mentioned above. In the amorphous PET three peaks can be seen, at ≈ 83 , 95 and 128°C (α , ρ and cc, respectively), while in the crystalline PET only two relaxations are distinguished, at 93 and 118°C (α_c and ρ_c), both of lower intensity than α and ρ and also more symmetric.

The peak cc occurring on heating the amorphous PET is thought to be due to the non-isothermal crystallization process. This assumption is based on the d.s.c, tests, which let us observe one exothermal peak in the same region of temperatures, and also on the degree of crystallinity before and after heating $(x_{ci}=0.3\%,$ $x_{\alpha} = 40 \%$). Obviously, the peak cc does not appear in the TSDC and DSC curves of the crystalline PET $(x_c = 40\%)$, *Figure 3.*

Since α_c and ρ_c relaxations are characteristics of the crystalline PET, the question arises whether α and ρ of the amorphous PET evolve continuously with the increase in crystallinity until α_c and ρ_c are formed, or whether the latter result from mechanisms other than α and ρ .

Initially, the influence of the polarization temperature T_p on α and ρ was examined in the temperature range 75-130°C. The curves shown in *Figure 4* were obtained.

With regard to α relaxation it can be observed that neither I_{σ} nor T_{σ} change significantly for T_{ρ} < 90°C, while for $90 \leq T_p \leq 110^{\circ}C I_{\alpha}$ begins to fall and T_{α} tends to move slightly towards higher temperatures. On the other hand, during this range of polarization temperatures, I_a increases progressively as T_p increases. Polarizations made at $T_p > 110^{\circ}$ C originate significant changes in both relaxations. While the α intensity falls sharply and its temperature increases, the ρ relaxation grows progressively, reaching a maximum, to decrease later, sharply increasing its position very clearly. For $T_p = 130$ °C, α_c and ρ_c are already perceptible *(Figure 5)*.

The most significant changes in both relaxations take place in the domain of polarization temperatures in which cold crystallization occurs, which is a reason to assume they result from it. However, these results do not clarify whether α and ρ evolve continuously to α_c and ρ_c .

Experiments in which the crystallinity of the samples were progressively increased have been carried out by the thermal stimulation by steps (TSS) method. Density was measured after each stage and, afterwards, crystallinity was evaluated.

Results for $T_p = 90^{\circ}$ C are shown in *Figure 6. Figure 7* shows the evolution of crystallinity *versus* final temperature reached in each TSS cycle. *Figures 8* and 9 show the evolution of the intensity and position of both relaxations *versus* the final temperature reached in the former discharge as well as the crystallinity of the samples.

For T_f < 105°C (x_c < 3%) no significant changes have been observed in either relaxation, although I_{ρ} tends to increase smoothly. In the T_f range between 105 and 120°C, changes are important and coincident with a marked increase in the crystallinity (x_c increases from ≈ 3) to 32%). The α relaxation tends to increase progressively the temperature of the maximum, while a marked fall of intensity begins to occur; equally, the ρ relaxation increases sharply in intensity, going through a maximum, and also increases its position. For $T_f > 120$ °C, with a small increase of crystallinity, ρ relaxation initiates a fast decrease in intensity while I_{α} falls sharply.

When this decrease is taking place, once crystallization has finished for the conditions mentioned, the occurrence of the α_c relaxation is emphasized, weak at first, placed at $\approx 10^{\circ}$ C above α and then becoming stronger when I_{α} begins to decrease. I_{α} and I_{α} are practically identical for a final temperature of 122°C ($x_c = 32\%$), while a weak ρ_c relaxation at about 116°C can be observed. For $T_f > 123$ °C, both α and ρ disappear from the spectrum and only α_c and ρ_c remain visible.

The results found for the variation of both relaxations with polarization temperature and from the application of the TSS method show - after an insensitivity period for crystallinities $<$ 3% – that α relaxation moves to higher temperatures and reduces its height, in accordance with

Figure 2 TSDC curves for PET samples with different crystallinities. A, PET-a, $x_c = 0.33\%$; $T_p = 88^{\circ}\text{C}$; $E_p = 90 \text{ kV cm}^{-1}$; $t_{pi} = 3 \text{ min}$; $v=2^{\circ}\text{C min}^{-1}$. B, PET-c, $x_c=40\%$; $T_p=108^{\circ}\text{C}$; $E_p=108 \text{ kV cm}^{-1}$; t_{pi} =60 min; $v=2^{\circ}\text{C min}^{-1}$

Figure 3 D.s.c. curves for, A, PET-c and, B, PET-a. Heating rate 2° C min⁻¹

Figure 4 TSDC curves of amorphous PET samples at different polarization temperatures T_p ; $E_p = 120 \text{ kV cm}^{-1}$; $t_{pi} = 5 \text{ min}$. T_p (°C): A, 75; B, 80; C, 85; D, 90; E, 100; F, 110; G, 118; H, 122; I, 130

Figure 5 Evolution of α and ρ amorphous PET relaxation versus polarization temperature T_p

Figure 6 TSDC curves obtained by TSS; $T_p = 90^{\circ}C$; $E_p = 90 \text{ kV cm}^{-1}$;
 $t_{pi} = 30 \text{ min}$; $t_d = 5 \text{ min}$. $T_f({}^{\circ}C)$: A, 112; B, 116.5; C, 117.5; D, 121; E, 122; F, 122.5; G, 123; H, 130

Figure 7 Percentage crystallinity x_c versus final temperature T_f reached in each TSS cycle

the results from dynamic mechanical and dielectric analyses, although such a displacement is very reduced. For crystallinities of 30% , the intensity of the relaxation falls sharply until its extinction. This is in agreement with the results given by Wissler⁵⁷ in polycarbonate by TSC
measurements. The fall of I_{α} shows the simultaneous occurrence of the α_c relaxation, wider and symmetric, which will remain later as a typical relaxation of the crystalline sample. This α_c relaxation becomes slightly displaced with further increase in crystallinity.

The fact that at no time is the displacement of the relaxation observed in the opposite direction, towards lower temperatures, as happens with other analytical methods^{24,25,27,28}, could be a consequence of different ways of preparing the samples and, thus, of a different morphology. The samples used in this work are presumably composed of a large number of small spherulites, since nucleation predominates over growth, while in the samples used by other authors the reverse displacement takes place in samples whose morphology is a small number of large spherulites.

The progressive presence of a large number of small spherulites in the material implies an important reduction of the chain movements in the amorphous region; consequently, the intensity of the relaxation must diminish until extinction when the crystallinity is high. The α_c relaxation resulting in the crystalline sample may have a different origin from the α relaxation and it may be related

Figure 8 Evolution of α and ρ relaxations versus final temperature T_f reached in each TSS cycle

Figure 9 Evolution of α and ρ relaxations versus percentage crystallinity x_c

Figure 10 Correspondence between the evolution of the ρ relaxation and the cold crystallization peak cc; $T_p = 90^{\circ}$ C; $E_p = 90 \text{ kV cm}^{-1}$ $t_{pi} = 15$ min. Numbers on curves relate to temperatures $T_1 - T_6$ on inset

to the movements of the interlamellar amorphous region; this matter will be dealt with in detail in a future paper.

Another aspect to consider is the possibility of a double $T_{\rm g}$ (T_g(L) and T_g(U)), according to the nomenclature used by Boyer⁵⁸, so that the α relaxation would be associated with $T_s(L)$. Boyer⁵⁸, based on the *v*-T curves found by Hellvege⁵⁹, suggests that $T_g(L)$ is essentially independent of crystallinity, while $T_s(U)$ is dependent, both becoming apparent for a crystallinity of 33% . He also suggests that Illers and Breuer's²⁵ measurements with a torsion pendulum at 1 Hz, where relaxation is strongly influenced by crystallinity with greater amplitude and marked displacement, could well be a joint occurrence of $T_g(L)$ and $T_{\rm g}(U)$ since the $T_{\rm g}/T_{\rm M}$ ratio in the PET seems unfavourable to their resolution by mechanical measurements. In this connection, our results show, on one hand, the small displacement of α with crystallinity and the simultaneous appearance of α and α_c with 32% crystallinity, which is in accordance with the Boyer hypothesis. On the other hand, α_c varies, although not very markedly, with crystallinity for $x_c > 33\%$. For $x_c < 33\%$, α_c does not become apparent in the discharge curves and, therefore, its evolution cannot be described. However, if α_c does not proceed from α as indicated, a more careful analysis could reveal an overlapped relaxation at α or, else, ρ which could give rise to α_c by evolution of crystallinity.

The possibility of a double transition has also been mentioned by Groeninckx *et al. 28* in PET samples isothermally crystallized as a function of time. This situation is due to the fact that spherulites are not totally developed and to the existence of an inter-spherulite amorphous region. One transition could be, then, due to the amorphous phase between lamellae constituting the spherulites and the other to the inter-spherulite amorphous region.

The ρ relaxation is strongly influenced by the crystallinity, not only in its position but also in its intensity. Its behaviour can be attributed to charge detrapping associated with progressive nucleation and further growth by chain incorporation to these nuclei. The self-accelerated crystallization process starts, in a first stage, the increase of intensity up to a maximum; the subsequent decrease will be a result of strong limitations on mobility imposed by the crystalline medium. The displacement will result from the higher thermal stability of charges and from the higher amount of energy required. This hypothesis seems possible if we consider the sharp fall of α and ρ almost simultaneous until their extinction.

To establish a connection between ρ evolution and the crystallization process, different samples of amorphous polymer have undergone a cycle of trials with the purpose of forming electrets and applying to them a discharge until a final temperature T_i was reached. Such a temperature belongs to the thermal range covered by the cc cold crystallization peak. The selected temperatures and the results obtained are shown in *Figure 10.*

In each discharge a ρ evolution is perceptible parallel to that followed by the cc peak, so that the ascending branch of cc fits in with the increase of ρ intensity, giving a maximum at T_2 , which corresponds to the maximum of the cc peak. The severe fall of ρ accompanies the decrease in cc until T_5 , where the four relaxations already indicated (α, ρ, α_c) and ρ_c) appear simultaneously. At T_6 , only α_c and ρ_c appear in the spectrum. Therefore, everything seems to indicate that ρ manifests the changes in the material during non-isothermal crystallization.

To go further into these aspects, the behaviour of ρ has been studied during annealing at temperatures low enough to ensure that nucleation is the dominant process and growth null or most limited. Annealing was done at $T_s=85^{\circ}$ C for times between 1 and 208 h. Samples were polarized at the same temperature under the conditions indicated in *Figure 11. Figure 12* shows the evolution of I_{α} and I_o with an annealing time t_a .

The α and ρ relaxations do not change significantly for t_a < 30 h. After this time, a gradual fall of I_a is initiated with no significant changes in its position while I_o grows, the maximum being displaced to higher temperatures. For $t_a = 140$ h the maximum value of I_ρ is reached and the

Figure 11 TSDC curves of amorphous PET samples annealed at $T_a=85^{\circ}$ C for different times t_a ; $T_p=85^{\circ}$ C; $E_p=90$ kV cm⁻¹; *tpi=* 15 rain. ta (h): A, 20; B, 30; C, 40; D, 112; E, 136; F, 160; G, 184; H 208

Figure 12 Evolution of α and ρ relaxations versus annealing time t_a for $T_a = 85$ °C

intensity begins to fall mildly without important modifications in its position, while I_n falls a little and tends to stabilization.

The parallelism found in the results is marked in these experiments and the TSS experiments, although in this case the relaxations α and ρ do not disappear and the simultaneity of the four relaxations does not take place, as it did with the TSS method. Because of the low crystallinity achieved, the experiments suggest that α_c and ρ_c become visible with higher crystallinities, the behaviour of relaxations depending on the type of crystallization.

The fact that nucleation is the only possible process at low temperatures of annealing facilitates the association with this process of the changes observed in both relaxations. After a period with no noticeable changes, the increase of the number of nuclei with time gives rise to a fall of I_a and to the displacement of T_a for the restrictions imposed. The fact that this nuclei increase is limited makes I_{α} tend to stabilization for high annealing times and, since growth is most unlikely, the displacement of T_a will not be important. The sharp fall of I_{α} in the curves resulting from the application of the TSS method would be consequent on the strong restrictions imposed by the crystallites during their growth. On the other hand, the fact that I_{ρ} passes by a maximum in its evolution could result from the limitation in the detrapped charge due to the limitation in the nuclei formation.

Since. during non-isothermal crystallization, nucleation and growth may occur together, the behaviour of α and ρ relaxations (*Figures 8, 9* and 10) shows three zones in relation to crystallinity:

In the first zone $(x_c < 3\%)$, with temperature $\leq 100^{\circ}$ C, the insensitivity of the α relaxation suggests that the restrictions are almost null because of the small number of nuclei, although their formation becomes more apparent by the growth of ρ resulting from the associated charge detrapping.

In the second zone $(3 \le x_c \le 30\%)$, with heating up to $\approx 121^{\circ}$ C (up to the maximum of the cc peak), there is a strong increase in the number of nuclei, with a likely beginning of growth, which is perceptible because of the increase of restrictions on the amorphous region. This, in turn, originates the fall of I_a and the displacement of T_a , while the liberation of charge becomes more marked by the effect of the process, which leads to the increase of I_a up to its maximum.

Finally, in the third zone $(x_c > 30\%)$, which corresponds to the descending branch of the cc peak, nucleation is possibly less and less effective. The growth of the nuclei formed causes the restrictions, so important in the amorphous region, that provoke the sharp fall of I_{α} to its extinction, as well as a more marked displacement of T_{σ} . On the other hand, the mobility of the chains for its incorporation will be less, and this will give rise to a fall in I_a . In the last stage of this crystallization, in which growth is dominant, α_c and ρ_c are formed, at first being overlapped with ρ relaxation, and at the end being the only relaxations of crystalline PET.

ACKNOWLEDGEMENT

This work is a part of Research Projects no. 0743/81 and no. 935/85 supported by the Comisión Asesora de Investigación Científica y Técnica (CAICYT), Spain.

REFERENCES

- $\mathbf{1}$ Van Turnhout, J. 'Thermally Stimulated Discharge of Polymer Electrets', Elsevier, Amsterdam, 1975
- Vanderschueren, J. and Gasiot, J. Thermally stimulated relaxation in solids, 'Topics in Applied Physics', Vol. 37 (Ed. P. $\overline{2}$ Braünlich), Springer-Verlag, Berlin, 1979
Van Turnhout, J. Electrets, Topics in Applied Physics', Vol. 33
- 3 (Ed. G. M. Sessler), Springer-Verlag, Berlin, 1980
- $\overline{\mathbf{4}}$ Belana, J. Doctoral Thesis, University of Barcelona, Spain, 1978
- $\tilde{\mathcal{L}}$ Creswell, A. R. and Perlman, M. M. J. Appl. Phys. 1970, 41, 2363
- 6 Miyairi, K. and Ieda, M. 'Charge Storage, Charge Transport and Electrostatics with their Applications' (Ed. Y. Wada, M. M. Perlman and H. Kokado), Elsevier, Amsterdam, 1979, p. 327
- $\overline{7}$ Lilly, A. C., Stewart, L. L. and Henderson, R. M. J. Appl. Phys. 1970, 41, 2001
- $\bf 8$ Sacher, E. J. Macromol. Sci. Phys. 1970, B4, 449
- 9 Sacher, E. J. Macromol. Sci. Phys. 1972, B6, 151
- 10 Sacher, E. J. Macromol. Sci. Phys. 1972, B6, 365
- 11 Sacher, E. J. Macromol. Sci. Phys. 1972, B6, 377
- 12 Sacher, E. J. Macromol. Sci. Phys. 1981, B19, 131
- Asano, Y. and Suzuki, T. Jap. J. Appl. Phys. 1972, 11, 1139 13
- 14 Asano, Y. and Suzuki, T. J. Appl. Phys. 1973, 44, 1378
- 15 Hino, T. Jap. J. Appl. Phys. 1973, 12, 611
- Hino, T. J. Appl. Phys. 1975, 46, 1956 16
- 17 Miyairi, K. and Yanagisawa, I. Jap. J. Appl. Phys. 1978, 17, 593 18 Kojima, K., Maeda, A., Takai, Y. and Ieda, M. Jap. J. Appl.
- Phys. 1978, 17, 173: 19 Belana, J., Colomer, P., Montserrat, S. and Pujal, M. Anal. Fis.
- B 1982, 78, 8 20 Belana, J., Colomer, P., Montserrat, S. and Pujal, M. Anal. Fis.
- B 1982, 78, 142
- 21 Belana, J., Colomer, P., Pujal, M. and Montserrat, S. J. Macromol. Sci. Phys. 1984–85, **B23**, 467
Schneider, W. A. and Wendorff, J. H. Colloid Polymer Sci. 1984,
- 22 262, 761
- 23 McCrum, N. G., Read, B. E. and Williams, G. 'Anelastic and Dielectric Effects in Polymeric Solids', Wiley, New York, 1967
- 24 Murayama, T. 'Dynamic Mechanical Analysis of Polymer Materials', Elsevier, Amsterdam, 1978
- 25 Illers, K. H. and Breuer, H. J. Colloid Sci. 1963, 18, 1
- 26 Takayanagi, M., Yoshino, M. and Minami, S. J. Polym. Sci. 1962, 61, 173
- 27 Dumbleton, J. H. and Murayama, T. Kolloid Z. Z. Polymer 1967, 220, 41
- 28 Groeninckx, G., Berghmans, H. and Smets, G. J. Polym. Sci. Polym. Phys. Edn 1976, 14, 591
- 29 Saito, S. Kolloid Z. Z. Polymer 1963, 189, 116
- 30 Reddish, W. Trans. Faraday Soc. 1950, 46, 459
- 31 Hedvig, P. 'Dielectric Spectroscopy of Polymers', Adam Hilger, Bristol, 1977
- Coburn, J. C. and Boyd, R. H. Macromolecules 1986, 19, 2238 32 Boyd, R. H. Polymer 1985, 26, 323, 1123 33
- Vanderschueren, J. L'effet thermoélectret et les phénomènes de 34 relaxation dans les polymères à l'état solide, Thesis Doctoral, Université de Liege, 1974
- Yeh, G. S. Y. and Geil, P. H. J. Macromol. Sci. Phys. 1967, B1, 35 235, 251
- Klement, J. J. and Geil, P. H. J. Macromol. Sci. Phys. 1971, B5, 36 505, 535
- Stuart, H. A. Angew. Chem. 1967, 6, 844 37
- Allen, G. and Petrie, S. E. B. (Eds) 'Physical Structure of the
Amorphous State', Marcel Dekker, New York, 1976 38
- 39 Illers, K. H. and Breuer, H. J. Colloid Sci. 1963, 18, 1
- 40 Lawton, E. L. and Cates, D. M. 'Analytical Calorimetry', Vol. 1 (Eds R. S. Porter and J. F. Johnson), Plenum Press, New York, 1969, p. 89
- Kilian, H. G., Halboth, H. and Jenckel, E. Kolloid Z. Z. Polymer 41 1960, 172, 166
- Mayhan, H. G., James, W. J. and Bosch, W. J. Appl. Polym. Sci. 42 1965, 9, 3617
- Schönherr, F. Faserforch. Textiltech. 1970, 21, 246 43
- Danz, R., Deshant, J. and Ruscher, G. Faserforch. Textiltech. 44 1970, 21, 251
- Illers, K. H. Kolloid Z. Z. Polymer 1971, 245, 393 45
- Deblase, F. J., McKelvy, M. L., Lewin, M., Bulkin, B. J. J. 46 Polym. Sci., Polym. Lett. Edn 1983, 23, 109
- 47 Wunderlich, B. J. Chem. Phys. 1958, 29, 1395
- Dole, M. Kolloid Z. Z. Polymer 1959, 165, 40 48
- 40 Ke, B. J. Appl. Polym. Sci. 1962, 6, 624
- Busico, V., Corradini, P., Riva, F., Seves, A. and Vicini, L. 50 Makromol. Chem. Rapid Comm. 1980, 1, 423
- 51 Turnbull, D. and Cohen, M. H. 'Modern Aspects of the Vitreous States' (Ed. J. D. Mackenzie), Butterworth, London, 1960, p. 38-62
- 52 Fielding-Russell, G. S. and Pillai, P. S. Die Makromol. Chem. 1970, 135, 263
- 53 Matusita, K., Maki, T. and Tashiro, M. Phys. Chem. Glasses 1974, 15, 106
- 54 Matusita, K. and Tashiro, M. Phys. Chem. Glasses 1973, 14, 77 55 Matusita, K. and Sakka, S. Bull. Inst. Chem. Res. (Kyoto Univ.) 1981, 59, 159
- 56 Matusita, K., Komatsu, T. and Yokota, R. J. Mater. Sci. 1984, 19, 291
- 57 Wissler, G. E. and Crist, B. J. Polym. Sci., Polym. Phys. Edn 1980, 18, 1257
- 58 Boyer, R. F. J. Polym. Sci. Symp. 1975, no. 50, 189
- Hellvege, K. H., Hennig, Y. and Knappe, W. Kolloid Z. Z. 59 Polym. 1962, 186, 29